SELFIS: A Tool For Self-Similarity and Long-Range Dependence Analysis

نویسندگان

  • Thomas Karagiannis
  • Michalis Faloutsos
چکیده

Over the last few years, the network community has started to rely heavily on the use of novel concepts such as fractals, self-similarity, long-range dependence, power-laws. Especially evidence of fractals, self-similarity and long-range dependence in network traffic have been widely observed. Despite their wide use, there is still much confusion regarding the identification of such phenomena in real network traffic data. For one, the Hurst exponent can not be calculated in a definitive way, it can only be estimated. Second, there are several different methods to estimate the Hurst exponent, but they often produce conflicting estimates. It is not clear which of the estimators provides the most accurate estimation. In this extended abstract, we make a first step towards a systematic approach in estimating self-similarity and long-range dependence. We present SELFIS, a javabased tool that will automate the self-similarity analysis. To our knowledge, our software tool is the first attempt to create a stand-alone, free, open-source platform to facilitate self-similarity analysis. We show the use of our tool and describe the methodologies that currently incorporates in real Internet data. Finally, we present an intuitive approach to validate the existence of long-range dependence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LASS: a tool for the local analysis of self-similarity

The Hurst parameter H characterizes the degree of long-range dependence (and asymptotic self-similarity) in stationary time series. Many methods have been developed for the estimation of H from data. In practice, however, the classical estimation techniques can be severely affected by non-stationary artifacts in the time series. In fact, the assumption that the data can be modeled by a stationa...

متن کامل

Estimation of The Long-Range Dependence Parameter of Fractional Arima Processes

The most well-known models of long-range dependent processes are fractional Gaussian noise [7] (thus secondorder self-similarity) and fractional ARIMA [3, 4]. Each of these models has a corresponding long-range dependence parameter. Since the value of the parameter indicates the intensity of this dependence structure, it is important to have a better tool to estimate it. Such an estimator shoul...

متن کامل

Is Admission-Controlled Traffic Self-Similar?

It is widely recognized that the maximum number of heavytailed flows that can be admitted to a network link, while meeting QoS targets, can be much lower than in the case of markovian flows. In fact, the superposition of heavy-tailed flows shows long range dependence (self-similarity), which has a detrimental impact on network performance. In this paper, we show that long range dependence is si...

متن کامل

Long-range dependence and second-order intermittency of two dimensional turbulence

This paper proposes a class of models to represent, in the same framework, the self-similarity/long-range dependence and secondorder intermittency of 2-D turbulence. A method is given to estimate and separate these two effects. Application to a vorticity field indicates that the resulting energy spectrum follows the power laws, in the low-frequency as well as the high-frequency range, commonly ...

متن کامل

Self-Similarity and Long-Range Dependence in Teletraffic

This paper revisits three important concepts in fractal type network traffic, namely, self-similarity (SS), long-range dependence (LRD), and local self-similarity (LSS). Based on those concepts, we address the reason why the local properties of fractional Gaussian noise (fGn) are contained in the global properties of fGn and vice versa, which may be a limitation of fGn in data traffic modeling....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002